
JPL D-1413

Autonomous Spacecraft System
Control Topics

P.R. Turner

15 March 1984

Prepared for

Office of Aeronautics and Space Technology
RTOP 506-64-15

National Aeronautics and

Space Administration

JPL
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

FOREWORD

Design of spacecraft for deep-space planetary exploration has led

the Jet Propulsion Laboratory to develop spacecraft controlled by complex

automated command sequences which include the capability for on-board

redundancy management and fault protection. This design feature allows the

spacecraft to operate independantly from real-time ground control, and with

reduced risk to mission success. The combination of automated operation and

fault protection provides the attribute of operational spacecraft autonomy.

This attribute has been recognized as a desirable goal for a variety of

military and civilian space applications and several years of effort have been

expended in the definition of autonomy and the analysis of appropriate design

methodologies. The work has produced a great deal of insight into the nature

of spacecraft autonomy and this document summarizes many of the important

points in a topical fashion.

The body of the document is organized into a series of 7 major

topics with several paragraphs of discussion for each. The appendix provides

a set of concise statements of the major points in each of the topical areas.

i/ii

TABLEOF CONTENTS

INTRODUCTION... v

i. AUTOMOMYDEFINITIONANDATTRIBUTES.................................. I-I

1.1 DEFINITIONOFAUTONOMY.. i-i
1.2 AUTONOMOUSCONTROLCHARACTERISTICS............................ 1-2
1.3 HISTORICALDEVELOPMENT 1-2
14 AUTONOMY/AUTOMATION
1.5 THE SCOPE OF AUTONOMY ... 1-3

1.6 FUNCTIONAL SCOPE OF AUTONOMY 1-3

1.7 TIME SCOPE OF AUTONOMY .. 1-4

1.8 TYPES OF AUTONOMOUS FUNCTIONS IN A SYSTEM 1-4

1.9 AUTONOMY TECHNOLOGY GOALS AND LEVERAGE 1-5

2. AUTONOMY AND COST/BENEFIT ISSUES 2-1

2.1 AUTONOMOUS OPERATIONS VERSUS NON-AUTONOMOUS 2-1

2.2 DATA POINT - AUTONOMY ADDED TO EXISTING DESIGN 2-1

2.3 DISTRIBUTION OF COSTS AND BENEFITS IN A PROGRAM 2-2

2.4 AUTOMATION OF GROUND OPERATIONS 2-2

2.5 SYSTEM RESOURCE MARGINS FOR AUTONOMOUS CONTROL 2-2

2.6 AUTONOMY AND RELIABILITY 2-3

3. SYSTEM ARCHITECTURE FOR AUTONOMOUS CONTROL 3-I

3.1 HIERARCHICAL STRUCTURE OF CONTROL FUNCTIONS 3-i

3.2 DATA COMMUNICATIONS AND CONTROL DISTRIBUTION 3-i

3.3 RESOURCE CONTENTION ... 3-3

3.4 FAULT TOLERANCE IN THE ARCHITECTURE 3-3

4. AUTONOMY AND ARTIFICAIL/MACHINE INTELLIGENCE 4-1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

EXPERT SYSTEM DEFINITION 4-i

EXPERT SYSTEMS DOMAINS AND SPACECRAFT CONTROL 4-I

COMPLEXITY AND RESOURCE USAGE 4-2

EVOLUTION OF AUTONOMOUS CONTROL SOFTWARE TOWARDS

EXPERT SYSTEM STRUCTURE 4-3

EXPERT SYSTEMS IN A HIERARCHICAL CONTROL STRUCTURE 4-4

CONTROL CHARACTERISTICS IN THE FUNCTIONAL HIERARCHY 4-5

SELECTING FUNCTIONS FOR EXPERT SYSTEM APPLICATIONS 4-6

5. HARDWARE ASPECTS OF AUTONOMOUS CONTROL 5-1

5.1

5.2

5.3

5.4

DIVERSITY OF COMPUTING RESOURCE REQUIREMENTS 5-i

EXECUTIVE CONTROL REQUIREMENTS 5-I

AUTONOMOUS HEALTH AND MAINTAINANCE IMPLICATIONS 5-2

FAULT TOLERANCE FOR CONTROL RESOURCES 5-3

_ _iIN'7_ _I_• _:_

iii

TABLE OF CONTENTS (CONTINUED)

6. SOFTWARE ASPECTS OF AUTONOMOUS CONTROL

o

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6-1

SOFTWARE VERSUS HARDWARE RESOURCES 6-I

RESOURCE MARGINS IN SOFTWARE DESIGN 6-I

AN "OPERATING SYSTEM" FOR THE SPACE STATION 6-i

COMMON FUNCTIONAL REQUIREMENTS FOR TEST AND OPERATIONS 6-2

A COMMON "TEST AND OPERATIONS CONTROL LANGUAGE" 6-2

SOFTWARE DESIGN FOR OPERATIONAL FLEXIBILITY 6-3

AUDIT TRAIL REQUIREMENTS 6-4

ISSUES IN AUTONOMY IMPLEMENTATION 7-I

7.1

7.2

7.3

7.4

7.5

DESIGN AND IMPLEMENTATION METHODOLOGY 7-1

CONTROL ARCHITECTURE .. 7-I

COMPONENT AVAILABILITY .. 7-I

SYSTEM DESIGN EXPERIENCE 7-2

TEST AND VALIDATION ... 7-2

REFERENCES ..

TOPICAL SUMMARY ...

APPENDIX

8-1

A

Fisure

3-]

A-I

Autonomous Command and Control Architecture 3-2

iv

INTRODUCTION

Jet Propulsion Laboratory involvement in Earth orbiting spacecraft

autonomy began in the summer of 1980 with a workshop sponsored by the Air Force

Office of Scientific Research involving industry and the Academic Community.

The objective was to define the concepts and technology needed to increase the

automation of spacecraft operation and reduce the dependance on ground control.

The motivation for this activity was simple. JPL spacecraft designed for

planetary exploration missions incorporated a degree of automated, fault-

tolerant operation that exceeded the current capability of earth orbiting

spacecraft for civilian and military applications. Future military needs

include the requirement for spacecraft to survive the occurrence of faults and

continue normal operations for extended periods without ground control. The

potential for reduction of ground support requirements for significant periods

of time provides the potential for significant life-cycle cost savings beyond

the direct mission operations requirements.

This initial effort led to the establishment of the Autonomous

Spacecraft Program at JPL. Development of design concepts for autonomous

spacecraft control has continued with the consideration of autonomy require-

ments of NASA missions as a significant product. Planetary class missions

have been considered, and the Space Station Program provides an additional

dimension in complexity and mission diversity. The autonomy considerations

developed in other mission contexts have been extended to the set of program

elements and mission areas that comprise the space station program concept.

This document summarizes a set of insights into the nature of autonomous

spacecraft control that spans the scope of missions from single spacecraft

missions to complex systems with man as an essential on-board element.

V

SECTION]

AUTONOMY DEFINITION AND ATTRIBUTES

Detailed discussion of autonomy is not possible without a specific

definition of the term. This concern and the differentiation between autonomy

and automation has been a major point of issue from the beginning of the work

in this area. The following definition has been refined through several

interations.

I.] DEFINITION OF AUTONOMY

The following definition of autonomy describes a fundamental system

level attribute of a spacecraft system:

"Autonomy is that attribute of a system that allows it to

operate without external control and to perform its specified

mission at an established performance level for a specified

period of time."

There are several fundamental points contained within this

definition:

(1) The "system" whose autonomy is being described must be clearly

bounded to allow differentiation between the system and its

external interfaces.

(2) The definition implies a control process whose functions are

carried out within the bounds of the autonomous system. Human

resources may be utilized in the control process if the system

boundary includes a manned component. The term "machine

autonomy" has been used to describe those circumstances where

human resources are not normally included in the control

process.

(3) The "specified mission" must be defined for each individual

project, program, etc. that has autonomous operations require-

ments. The portion of the project-specific mission requiring

autonomous operation may be the entire mission or only a

specific portion of the nominal mission.

(4) The "established performance level" may include a specifica-

tion of full nominal performance or some minimum level of

performance that is adequate to satisfy mission requirements

for the autonomous operation period.

(5) The "specified period of time" is necessary to scope the

autonomous control problem and to ensure that the proposed

implementation meets this requirement.

i-i

(6) Autonomyimplies adaptability in the control process. This
adaptability includes the ability to continue to operate at
somelevel of performance in the presence of faults (fault-
tolerance, redundancy management)and to maintain the
specified level of system performance (calibration, health
maintenance). Mission-specific requirements for adaptability
of the onboard control process may include the ability to
select alternate control modesand sequences, to perform navi-
gation functions, and/or to collect and process mission data.

1.2 AUTONOMOUSCONTROLCHARACTERISTICS

Autonomy requires a three-step control structure. Those processes
that require closed-loop control may cycle from step (3) back to step (I),
below.

(i) Sense and analyze the state of internal or external

quantities which are inputs to the control process.

(2) Derive and command a response by the system that meets an

appropriate objective.

(3) Act to implement the response.

The control process is implemented through control resources that

imply a connection between command resources and data mapagement resources.

Sensory data required by the command resource may be collected and communicated

by data management resources in a manner normally used for engineering

telemetry. A conventional command system may be utilized by an autonomous

command resource to implement desired system and subsystem level state and

operating mode changes. Programmable computer resources for the logical

direction of the control process allow the flexibility needed to provide

adaptable control. As system complexity increases, distribution of separate

control resources to the subsystem level and below: I) serves to reduce the

pressure of multiple demands upon a central resource, 2) reduces the inter-

dependence of subsystems, and 3) supports the evolvability of the system to

meet new requirements.

1.3 HISTORICAL DEVELOPMENT

Early planetary exploration spacecraft were designed as semi-

automated systems. Hardwired sequencers controlled payload functions on the

basis of a timer initiated in the launch phase of the mission. Trajectory

correction maneuvers which maintained the nominal timeline of the sequencer

were ground initiated and automatically executed by on-board hardwired

controls. Increasing mission complexity with attendant payload and spacecraft

control requirements led to the provision of in-flight programmable sequencing

and control that was eventually supplied by on-board digital computers.

Additional mission complexity results in increased risk of failure which may

be countered by dedication of some portion of the on-board control resource to

fault-protection. The existence of a programmable control resource with access

to the engineering data of the spacecraft allows closed loop control for both

fault protection/redundancy management and maintenance of the operating

condition of subsystem components.

i-2

The preceeding description is an example of an automated system
evolving into an autonomoussystem. That is, an automated system functions
within a limited and pre-defined scope of circumstances. The addition of
fault-tolerance and the ability to adapt control behavior to changing external
and internal conditions on the basis of sensed information leads to an
autonomoussystem.

1.4 AUTONOMY/AUTOMATIONEXAMPLE

A further differentiation between the two terms is illustrated by
the following examples. Attitude control of three-axis stabilized spacecraft
is typically carried out by a closed-loop control process. Current designs
provide a series of automated operating modesof the control system to
accomplish specific mission phases. Sunacquisition, earth acquisition, and
nominal on-orbit nadir pointing are typical examples of automatic control
operating modes. These normal operating modesmay be perturbed by the
occurrence of componentor sensor failure. Such an external disturbance
usually results in a fail-safe condition that requires external control action
to restore normal operation. An autonomousattitude control function would,
at a minimum, attempt to restore the normal operations through a combination
of redundancy managementand reacquisition of attitude references. Failure in
this attempt at autonomousrecovery would result in no worse than a safe

spacecraft state. The autonomy in the system would be designed to restore

normal operating conditions within the bounds of availiable resources.

It is important to note that automated functions are used in the

achievement of autonomy. Autonomous control extends the automated functions

by providing the system with enhanced adaptability and fault protection.

1.5 THE SCOPE OF AUTONOMY

The scope of autonomy in a system is a significant issue which

becomes critical when the system is as large and complex as the space station.

The scope of autonomy has at least two dimensions, those of function and time.

Functional autonomy identifies those functions which will be controlled within

the system bounds and the required level of performance in autonomous

operation. The time scope includes both the duration of autonomous operation

and the distribution of control tasks in time.

1.6 FUNCTIONAL SCOPE OF AUTONOMY

Functional candidates for spacecraft autonomy have been described

in four areas (Reference 1-I). These areas are system health and maintenance,

navigation, payload sequence generation and control, and payload data process-

ing. These generic areas rapidly expand in complexity as lower level mission

functions are enumerated and described (Reference I-2). The issue is further

complicated by the fact that many of the more detailed functions in these

categories are interdependent. Health and maintenance of the system is funda-

mental to all system operation. Though the function of an individual component

may not be critical to overall system performance, it can still affect the

operation of some part of the payload and its command sequencing. Similiarly,

payload design and the sequencing of payload operations will place varing

i-3

demandsupon the operation of the core station functions of power, attitude
control, data management,etc. that provide utility support for the payloads.
These functionally interdependent areas are significant design issues for
autonomousspacecraft systems.

1.7 TIMESCOPEOFAUTONOMY

The time scope of autonomousoperations has two aspects. The first is the
duration of autonomousoperation for a function. Does the function have to
operate without outside control for a period of an hour, a day, a week, the
station lifetime? This may be both a characteristic of the function itself
and a reflection of the mission requirements for the function. Real-time
control of an Orbital Maneuvering Vechicle (OMV)docking maneuvermayrequire
autonomouscontrol by the orbiting station, but other aspects of configuring
the OMVor station proximity operations subsystemmayoffer potential trade-
offs for ground support. This leads to the second time aspect of autonomy-
segmentation of tasks with respect to real-time requirements. A given function
will consist of a series of tasks ranging from planning and commandsequence
generation, through real-time task control, to analysis of results. The nature
of these tasks and the difficulty of performing them autonomously mayvary
greatly. Planning, scheduling, and sequencing activities tend to be well
suited to application of Expert Systems or Artificial Intelligence techniques
while low-level control actions tend to require deterministic responses to
sensed data.

1.8 TYPESOFAUTONOMOUSFUNCTIONSIN A SYSTEM

Autonomouscontrol function candidates are located in manysystem
areas and involve different enabling technology areas. The space station
provides a wide range of potential applications to meet desired operational
goals (Reference I-3). Core station operation provides one set of possibil-
ities involving autonomousspacecraft design methodology with direct
connections to computer hardware and software technologies. Major mission
functions of the space station such as Orbit Transfer Vehicle (OTV)servicing
and operation, OMVservicing and operation, and proximity operation with space
shuttle involve specialized technologies of robotics, teleoperation, and Expert
Systems/Artificial Intelligence. These specialized technologies mayalso have
applications to the core station autonomy implementation. There is a natural
tendancy to lump all these complex functions and enabling technologies under a
central banner of autonomy/automation. This would seemto simplify issues by
taking advantage of the similiar high level requirement of reducing manned
involvement in system control. This commonality does not extend too far down
into the system design, however. The real commonality lies in the need for
computing and data processing (processing, storage, and communications)
hardware and the software and system design methodologies that are needed for
control implementation. These are the basic tools to construct the "analyze"
and "initiate response" portions of the three step control process described
in subsection 1.2. The "sense" and "act to implement response" portions are
significant and often unique parts of the individual function being controlled.

i-4

I. 9 AUTONOMYTECHNOLOGYGOALSANDLEVERAGE

The autonomouscontrol of core space station functions (executive
control, power, attitude control, etc.) are fundamental to the space station
operation over its lifetime. The technologies needed to implement this control
are design methodologies, computer hardware technologies, and software tech-
nologies that are equally applicable to specific payload or service functions
such as OMVoperations or propellant loading. The largest leverage for
autonomy/automation technology is to develop and demonstrate technology and
design options for core station functions that will be in continuous operation
throughout the space station life and support increased crew productivity in
day-to-day station operation. The technologies that support this can be
combinedwith specialized sensor and control requirements of more restricted
disciplines and lower-level functions to support autonomy/automation of these
less commonlyused service functions of the space station.

I-5

SECTION2

AUTONOMYANDCOST/BENEFITSISSUES

Addition of autonomy to a space system design increases the cost
and complexity of the space segment above that of a conventional design where
provisions for automated fault £etection and correction are absent. The
increase in cost and real benefits derived from autonomouscontrol are a
unique function of each mission and its requirements. The following points
deal with someof these issues.

2.1 AUTONOMOUS OPERATIONS VERSUS NON-AUTONOMOUS

Simple missions that may be satisfied with preprogrammed control

strategies or which have limited, predetermined objectives may be implemented

without complex control resources that characterize current design concepts

for autonomy. Addition of complex programmable control resources with the

attendant software development and system test requirements significantly

increase costs. Simple design techniques for implementation of fault

protection could provide limited autonomy of operation and the attendant

benefits without requiring more complex design for adaptable control

on-board. Satellites which were developed in the Initial Defense Communica-

tions Satellite Program during the 1960's are examples. These satellites had

a nondirectional communications repeater, no ground command capability, and

redundancy provided through constellations of simple spacecraft. They were

totaly automated but only autonomous in the aggregate of many spacecraft

since a failure of a primary component caused loss of mission capability on an

individual spacecraft.

More complex missions have evolved to require programmable control

resources for the spacecraft as a system and to allow the payloads to be

operated by pre-determined command sequences. These more complex spacecraft

already pay for the inclusion of significant on-board redundancy, sensing of

the operating state and health of components, and the organization of the

sensor data for transmission to ground control facilities. A design that

utilizes these basic resources to analyze the sensor data on-board, direct the

selection and execution of stored contingency command sequences, and recon-

figure the spacecraft to meet the changing conditions can provide significant

autonomy for its operations. Use of resources in this fashion and cost of

additional resources for evolution of new capability may be less than that

required to add similiar adaptability to the simpler missions of the type

mentioned above. The cost of basic control features required on-board for

implementation of a normal mission should not be "book-kept" against autonomy,

even though the resources can be designed to implement autonomy.

2.2 DATA POINT - AUTONOMY ADDED TO EXISTING DESIGN

A major aerospace contractor is reported to have conducted a study

of adding autonomous control features to an existing design which was not

considered autonomous in health and maintainance. The details of the effort

and program were proprietary, but the projected increase in spacecraft cost

over the existing design was approximately I0 percent to add a significant

amount of autonomous control.

2-i

2.3 DISTRIBUTIONOFCOSTSANDBENEFITSIN A PROGRAM

Cost increases due to implementation of autonomytend to appear at
the beginning of a program. Design, construction, and integration test of
complex spacecraft containing embeddedcomputers for on-board control wilt
increase as the functional requirements increase. On-going software develop-
ment and maintenance costs in operations may_ncrease if there is no
significant need for these in a non-autonomousdesign implementation. The
major benefits of autonomytend to occur in operations and later in program
life. Reliable and properly designed autonomouscontrol can reduce the need
for ground support operations and significantly reduce the risk of loss of a
spacecraft due to failures (Reference 2-1). These benefits can not be
achieved unless they are sold to program managementand operations plans are
developed to take advantage of them.

Cost differences and potential benefits may thus be characterized
as "front-end loaded with life cycle payoff". The main difficulty with this
arrangement is that a program with front end cost difficulties maychoose to
solve their front end problems by reducing costs associated with autonomy
while accepting the increased life-time operating costs.

2.4 AUTOMATIONOFGROUNDOPERATIONS

Addition of on-board computer resources and the attendant flight
software development requirements has impact upon the ground operations
facilities and personnel. This impact may be minimized in the lifecycle by
appropriate ground system design. Automated telemetry and spacecraft state
analysis can improve productivity of ground personnel in normal health and
maintenance support. Well designed software development and test facilities
can minimize software costs whether associated with autonomyor normal
operational requirements. Visibility requirements that specify on-board
recording of autonomouscontrol actions (audit trail) support the automated
processing of spacecraft operation data on the ground and simplify the ground
support task for autonomousspacecraft. Ground operations cost savings must
be achieved by utilizing the fault-tolerant nature of autonomousspacecraft
design to reduce operations loads while automating remaining operations to
achieve maximumproductivity of ground personnel.

2.5 SYSTEMRESOURCEMARGINSFORAUTONOMOUSCONTROL

Fault-tolerance for autonomymaybe increased by a "tall-pole in
the tent" approach. This is characterized by identifying specific high-risk
areas in a design and providing specific modifications or software algorithms
to meet the individual problem. To somedegree, this will be the reaction to
newly perceived problems in any design activity. Recognition of fault-
tolerance as an autonomoussystem design requirement and the provision of
control resources with significant capability margins (memory, throughput,
etc.) at specific points in the design process can serve to offset the
occurrence of late recognition of requirements. However, selection of the
margins should consider the potential for increased resource requirements for
normal autonomouscontrol features as well as fault-tolerance related "fixes".
Evolution of understanding of a design during the design process tends to
significantly increase the complexity of control design for nominal operations

2-2

as well as for faults. As a net result, a variation on Parkinson's law
expressed as "requirements will expand to fill the resource availiable" tends
to be a bit optimistic if anything. Project Galileo established memoryand
performance margin goals that appeared conservative at the beginning of the
program. These were quickly overrun at an early point in the design, in spite
of the managementattention which was focused on the issue.

2.6 AUTONOMYANDRELIABILITY

Reliability modeling techniques currently in use are not applicable
to calculating the reliability of systems incorporating autonomouscontrol.
Probabilistic models that include reliability improvements due to redundancy
do not allow for reliability of the control process. The ability to correctly
assess a fault and commandthe switching to the redundant elements in time to
prevent significant impact on the system mission is assumedto occur with 1.0
reliability. These model features are not unreasonable for assessment of
reliability of systems where control architecture and distribution of control
between on-board and external resources is not an issue. The models are
clearly inadequate for assessing autonomoussystems reliability. Autonomy
adds on-board complexity to a system and the added hardware and software
components to implement control will always have reliabilities less than 1.0.
However, tile autonomoussystem should be assessed against the total ground and
space segments of a non-autonomoussystem to comparesystem "operability" and
"availiability", rather than only conventional reliability.

Autonomouscontrol includes fault tolerance in the system and in
the control resource. Its primary contribution to the system reliability is
to detect and correct faults before they can have significant impact on the
system, and maintain it in operating condition with fail-safe provisions for
those conditions which cannot be corrected with existing resources. Modeling
of the contribution to system reliability must include the reliablity of the
fault detection and correction process as a minimum. The time aspect of real-
time monitoring and control on-board versus the delays implicit in external
ground control schemesshould also be factored into a model. Finally,
reliability factors to account for ground control proceedural errors should be
included.

2-3

SECTION3

SYSTEMARCHITECTUREFORAUTONOMOUSCONTROL

The three step control structure logic described in subsection 1.2
implicitly links autonomouscontrol with requirements for state sensing, data
processing, data communications, and command/control of functional system
elements. Design of a system for implementation of autonomouscontrol must
consider the functional distribution of control logic and the required data
communications amoungfunctional elements in the development of a data system
architecture. Reference 2-I describes a candidate functional architecture for
the autonomouscontrol of core space station functions. This section
summarizessomeof the points discussed in the reference.

3.1 HIERARCHICALSTRUCTUREOFCONTROLFUNCTIONS

The traditional division of a defined system into subsystems and
elements within the subsystems leads to a hierarchical control structure.
Subsystemsand their elements provide services through internal functions
which may be interactive with external functions or which may be controlled
locally without external impact. The local or interactive nature of control
for a function maywell be a design option in its implementation. The design
of distributed system control is simplified by decoupling the lower-level
functions from one another as muchas possible. The decoupling of functions
also simplifies integration testing of the system and evolutionary addition of
new capability or upgrading of baseline elements.

Figure 3-1 is taken from Reference 2-I and depicts a candidate
functional control hierarchy for space station core functions. The levels of
the hierarchy are numberedwith level 0 representing the executive control
functions required for system control and crew/ground interface functions.
Traditional functional subsystems have executive control functions at level I
which allow for direct external control and which interface with the level 0
station executive functions. Level 2 represents the control and execution of
internal applications performed by the subsystems. Lower levels are provided
for control sensors and "smart" sensors, actuators, etc. which implement the
functions of the subsystems.

3.2 DATACOMMUNICATIONSANDCONTROLDISTRIBUTION

Data flow consists of sensory data for control of applications
functions (attitude control, power regulation, etc.), sensory data for health,
maintenance, and system status monitoring, and commandtraffic (controller
intercommunciations, controller to device, etc.).

Distribution of control resources and commandcapability to lower
levels of the hierarchy can reduce the data rate requirements for automated
control. A lower level controller can operate with whatever control bandwidth
is appropriate for its tasks and communicatestatus information to higher level
controllers at a reduced rate. Local storage of complex commandsequences can
allow higher level controllers to direct major low level activity with simple
commandsthat select the desired low level sequences. An example of this

3-I

_:,L
Cj Z

_Z_l

z->6 I
F" U 7" U I

I

I
I I
I I

I

i.-

4-)
(J

J,.J
,r-i
...C
{J

0

4J

0

,-_

0

m

0

0

0
*J

I

3-2

technique in current practice is the design of complex sensors and "smart

devices" with embedded processors. These elements of the lower level of the

functional hierarchy commonly have complex local control sequences implemented

in Read-only Memory (ROM). Control resources at higher levels of the hierarchy

can command specific "operating modes" of the sensor or device without direct

access to the detailed local commands that establish the modes.

Such design techniques can reduce the inter/intracommunications

data rate requirements for autonomous control. Reduced data rates simplify

the fault-tolerant data communications bus for control functions. The multi-

hundred megabit data-rate requirements proposed for some space station payloads

and for specialized services such as video can be provided by a separate high

speed bus whose fault-tolerance is not as critical to station operation and

whose resource will not be impacted by contention with high priority control
data.

3.3 RESOURCE CONTENTION

The distribution of control resources and responsibilities to low

levels of design simplifies the design and implementation of control in a

complex system. Processes can execute concurrently at different control

bandwidths and not compete for processing time in a common resource. The

process of designing interdependent functions can concentrate upon processing

and data interchange characteristics with contention for data communications

as a primary concern.

3.4 FAULT TOLERANCE IN THE ARCHITECTURE

Designing fault tolerance into the system can allow continued

operations in the presence of faults. This can minimize anomalous system

behavior which may require immediate analysis and intervention to prevent loss

of system performance or more serious consequences. In addition, the affects

of a single fault may be prevented from propagating to other parts of the

system where cascading impacts upon system operation mask the origional fault.

Fau]ts may occur in the control resource components or in the basic subsystem
elements.

Faults in the control resource components can produce a variety of

serious consequences. At best, there will be a loss of control capability for

some period of time until the problem is identified. At worst, the control

elements may propagate improper actions to other parts of the system and the

problem may appear as anomalous behavior of other components. Minimization of

fault impact in this vital area of control can be supported by fault-tolerant,

self-checking control resources. At a minimum, fault-tolerance is required in

the level 0 station executive controller to protect the top level of inter-

active control and the interface to flight/ground crew. The next candidate is

resources for critical level] subsystem executive functions. Lower-level

fault-tolerance may be supported by the higher-level executives or distributed

to levels whose functions are critical in terms of safety, system impact, or

timing.

3-3

Functional applications below the subsystem level are generally
provided through redundant elements and sensing of operational status
parameters to support failure detection. Executive control resources can use
the sensed status data to detect faults and initiate replacement with redundant
elements. Manyfaults can be prevented from affecting external functions in
this manner, and those that do impact other functions may be isolated. The
local control resource provides notification of the fault location to other
control resources to prevent them from mistakenly perceiving potential faults
in the responses of their respective status input parameters. Somefaults in
functional areas with significant external interactions mayrequire supporting
reconfiguration or reinitialization of external subsystems. This interactive
response can be coordinated by the executive resources at higher functional
levels.

3-4

SECTION4

AUTONOMYANDARTIFICIAL/MACHINEINTELLIGENCE

Machines that perform as a humanwould perform in the same
circumstances have long been a challenging technology goal. The technology
for achieving this behavior is usually classified as Artificial Intelligence.
The actual implementation of this technology as part of a system results in
the attribute of machine intelligence. Machine intelligence maybe
implemented as part of system automation. It can contribute to system
autonomyand reduce crew workload in planning and supervision of automated
functions. This section focuses on implementation of machine intelligence
through Expert System (ES) technology.

4.1 EXPERTSYSTEMDEFINITION

An expert system addresses a specific field of knowledge. Within
that field (the "Domain" of the ES) the decision making and control performance
of the expert system attempts to approximate the best performance of a human
expert in the field and (hopefully) maysurpass the average performance of a
given set of experts.

Applications of ES technology are commonlyimplemented in what is
called a knowledge-based system. Expert knowledge in the system is organized
into three areas: data, knowledge base, and control (Reference 4-I). The data
represents declarative knowledge about the task being solved and the state of
the system in solving the problem. The knowledge base provides the generic
description of the problems that lie in the domain of the system's expertise.
It consists of those informational relationships and procedures that might
possibly be applied to the data to produce a problem solution. The control
structure is the programmedlogic that applies the knowledge base to the
particular problem described by the data in order to yield a solution.

4.2 EXPERTSYSTEMSDOMAINSANDSPACECRAFTCONTROL

The domain of an ES is the specialized area of knowledge represented
in its data, knowledge base, and control structure. The best knownapplica-
tions in literature are for medical diagnosis, analysis of geological survey
data, and computer system configuration generation. Recent work and work in
progress includes applications for tactical aircraft combat mission planning
(Reference 4-2), spacecraft power subsystem control, teleoperations control
(Reference 4-3), and commandsequence generation for spacecraft control
(Reference 4-4).

These latter areas show promise for autonomousspacecraft control
applications. The earlier work in the field has concentrated on the use of ESs
as diagnostic aids to humanswhoseexpertise might not be as broad as that
which has been incorporated in the machine. These systems maynot provide
satisfactory solutions to all problems in their domain, or maynot provide a
solution at all. These off-line advisory characteristics are not acceptable
as part of a real-time control system, which is one of the more challenging

4-i

requirements for autonomousspacecraft design. Real-time control, planning/
scheduling of resources, and fault identification and correction at system
level are somemajor functions that can benefit from application of ESs
methodology. Someareas for development of ESs relevant to control of complex
spacecraft systems include:

(i) Definition of spacecraft system control domains.

(2) Development of subsystems as components of a distributed,

hierarchical control system.

(3) Development of subsystems as components of a real-time, closed

loop control system for spacecraft functions.

(4) Development of interface methodologies for multiple expe÷t

systems which support interdependent functions.

(5) Use of audit trail analysis or other techniques in expert

systems to provide increased visibility into system operation

for test and validation.

(6) Use of Artificial Intelligence (AI) and ES techniques in

multi-mission or mission adaptable software design for flight

applications.

(7) Develorment of techniques for reducing overhead for general

knowledge base implementation to conserve on-board memory
resources,

(8) Development of search techniques that reduce trial search

times in specific spacecraft oriented applications and improve

performance in support of real-time applications.

(9) Development of a natural language interface for spacecraft

command, control, and sequencing.

(10) Incorporation of (9) as part of a distributed "operating

system" for spacecraft control.

4.3 COMPLEXITY AND RESOURCE USAGE

General-purpose ESs require large computer resources. Resource-

inefficient coding languages, knowledge bases containing redundant information,

and heuristic techniques for problem solving place significant burdens on

spacecraft systems constrained by size, mass, power, and timeline actions.

Specialized processors for AI/ES development indicate the nature of this

problem. A configuration of the Symbolics 3600 LISP machine is advertised as

having 474 megabytes of physical storage and a i Gigabyte virtual memory

capacity.

Throughput is a significant resource in control systems. Applica-

tions which require extensive searching or problem solving may not provide

sufficient throughput for real-ttme control applications. Those techniques

4-2

with non-deterministic or variable execution times maynot be acceptable in
app]ications that involve high-bandwidth processing or which interface with
other processes where execution timing is critical for synchronization of the
processes.

Advances in computer hardware technology will reduce size, weight,
and power requirements of resources, but system designers will need to simplify
contro] requirements. Ground based systems for research, analysis, and soft-
ware development can be used to reduce the knowledge base resource requirements
and domain of on-board expert systems. This maybe accomplished by performing
a portion of the function on the ground (i.e. long term planning) or by
compiling a software system for use in a more limited on-board resource.

A hierarchical and distributed control system can reduce domain and
resource requirements on an ES by locating direct control of detailed tasks
within lower-level resources. The ES then [s responsible for scheduling and
planning the sequencing of the lower-level tasks. Further discussion of the
topics of control distribution and time partitioning of functions ls presented
in a later topic of this section.

Reference 4-5 proposes an ingenious approach to ES implementation
that could be significant for flight applications. The more volatile portions
of the ES - the knowledge base and the data base would be implemented as
software componentsin random-accessmemory. The control portion, including
the inference engine, would be implemented as a special purpose processor chip
which would be optimized for symbolic processing. This approach could include
the design of the symbolic processor as a "co-processor" in a family of flight
-qualified, special-purpose processors with suporting input/output functions.
The Inte] 80XX family of processors provides an example with the 8087 Numeric
Co-Processor providing high-speed floating point mathematics support to the
basic 8086/8088 processors. This approach to providing specialized symbolic
processing might be a powerful meansof "shrinking" current large,
general-purpose symbo]ic processing computers such as the Symbolics 3600
mentioned above.

4.4 EVOLUTIONOFAUTONOMOUSCONTROLSOFTWARETOWARDSEXPERTSYSTEM
STRUCTURE

Software for autonomouscontrol functions was first used in
planetary missions to provide fault protection for specific spacecraft design
features. This application required the design and coding of a separate
a]gorithm for each problem. An algorithm mayvary from very simple to very
complex. It mayaddress only a limited number of faults or may provide
functional protecton against a wide variety of faults. Routines becomevery
numerousas the spacecraft design grows more complex. The increasing amount
of fault protection software within a spacecraft design has led to the concept
of a "fault protection subsystem" composedof this software. This "fault
protection subsystem" concept is an organizational approach to placing
responsibility for fault protection design and the implementation of the
software portion in a specific system engineering group. The actual provision
of fault protection as an attribute of the system requires trades between

4-3

system and subsystem level design features and is not easily divisible into a
seperate "subsystem". This evolving process has been extended to the design
of algorithms and associated software routines to implement individual
autonomouscontrol functions without regard to their support for fault
protection. This methodology has been referred to as "algorithmic autonomy"
to differentiate it from AI related approaches to control. This shou|d not be
confused by the detail that expert systems and other AI applications also re]y
upon algorithms within their software structure.

The growing complexity of software for autonomouscontrol produces
a significant problem in software modification and testing. It becomes
difficult to design and test an initial baseline configuration and the problem
does not improve later as the baseline is modified and tested in flight. "Data
base driven" designs have been developed to partially alleviate this problem.
The control logic of the software is designed around variables in a data base
that a11ow the]ogic to be changed by updating the data base rather than
recoding. This removes a large numberof problems that can arise when software
is recompiled and relinked into a new configuration. The ability to change the
logical behavior of the software by changing the data base values simplifies
testing by limiting the portions of the software that interact with the changed
logic. Regression testing of the remainder of the logically unaffected soft-
ware is not necessary as it would be the case for a new recompiled and relinked
software package.

This technique of using data base, value driven logic can be
extended to include a relational data base of generic logical routines, which
are selected by a executive or control routine. The appropriate logical
routine is selected by input state and data base values. This software
engineering technique begins to approach the implementation of a knowledge-
based expert system. The data base contains the state and control parameters
equivalent to the data base of the ES. The generic logical routines form a
collection of capabilities similiar to a knowledge base, and the executive
control software provides a control structure to drive the selection and
operation of routines in the "knowledge base" based upon input and data base
content. Current approachs to software design for autonomouscontrol can thus
evolve towards an ES structure. This approach maymakeit difficult to
incorporate the full power of generic techniques developed in ESs work. On
the other hand, it mayproduce a system with the desired domain of expertise
without someof the penalties of ES overhead mentioned in subsection 4.3 above.

4.5 EXPERTSYSTEMSIN A HIERARCHICALCONTROLSTRUCTURE

There is a tendency to use the term "ES" as a convenient buzz word
to signify a newapproach to implementation of complex systems. ES techniques
have great potential for enabling solutions to complex planning and control
problems in automated and/or autonomoussystems. It is necessary, however, to
consider that ES applications are only a part of the overall functional system.
A hierarchical structure is a fundamental characteristic of autonomouscontrol
implementation (Section 3.) and ESs techniques are poorly suited for the lower,
more detailed levels o_ the control structure. It is necessary to define the
appropriate scope of ES implementation in a control structure and clearly

4-4

define the bounds of responsibility for the "ES". Failure to accomplish this
will lead to confusion over the actual value of ESs in control applications.
Also, it can lead to needless expenditure of resources by attempting to force
application of ESs techniques on problems which are more efficiently solved by
traditional software techniques.

The appropriate issue is to consider the characteristics of the
hierarchical control structure for an application and identify the appropriate

scope of responsibility for ESs techniques. Principal characteristics of

interest are the increasing level of detail in the lower levels of the hier-

archical control structure, the functional characteristics of the various

levels, and the time domain of interest in the control problem.

4.6 CONTROL CHARACTERISTICS IN THE FUNCTIONAL HIERARCHY

The higher levels of the control hierarchy involve the planning and

scheduling of interactive functions which are implemented in detail at the

lower levels of the structure. These planning and scheduling tasks are well

suited to the application of expert system techniques. Reference 4-4 provides

an example of work on spacecraft command sequence generation that is directly

applicable to level 0-I executive control tasks (Figure 3-i). A wide range of

sequencing and scheduling problems will exist that are very complex, are not

necessarily determ- inistic, are subject to detailed operations constraints,

and may require frequent rescheduling as mission requirements change or

equipment faults force changes to preplanned sequences. These tasks are

characterized by the need to coordinate the control of interactive lower level

resources and by the need to perform the activity at a point in time prior to

the actual detailed execution.

The lower levels of the hierarchy provide detailed control over

specific functions in real or near-real time. Sensors can be provided to

directly measure the operating status of the task and provide a local control

resource with a more unambiguous determination of the health of hardware/

software in operation than is possible at the higher levels. In many cases,

faults can be detected at these low levels and corrected without significant

impact on system operation or the functioning of other subsystems. If a fault

does have impacts outside the bounds of the lower-level control resource, the

resource can identify the fault to the other affected resources to prevent its

propagation as a fault in their operation. There will exist a set of faults

that will require very high level co-ordination of resources for solution.

This specialized set of faults has system level impact and is an appropriate

area of concern for resources at levels 0-I of the control hierarchy.

Identification of this set of system level faults serves to limit the knowledge

and resource demands upon expert systems at those functional levels.

The time domain requirements of the functional hierarchy are a

significant design point. Some functions at levels 0-1 are significantly

non-real time in nature. Examples are planning and scheduling system control

sequences for the next day or hour's operation and analyzing the performance

of a subsystem over a past period to predict future behavior. Real to near-

4-5

real time tasks involve the control, caution, and warning interface with the
crew, system response to faults with system impact, and the fault to]erance of
the executive control resources themselves. These types of tasks have
significantly different requirements for timeliness of control response. The
appropriate location of expert systems techniques in the system must address
both the functional nature of the tasks and the performance requirements in
the time domain.

Reference 4-3 describes a partitioning of ES and conventional
control resources within a teleoperation system. The higher level control
tasks progress from a "strategic" level which plans the execution of lower
level tasks to the direct control of specific functional subtasks by distri-
buted "tactical" control resources. This distribution of functions by time
domain and control resource in a functional hierarchy is characteristic of
current ES application for processes in real-time control.

4.7 SELECTINGFUNCTIONSFOREXPERTSYSTEMAPPLICATIONS

Prior topics have characterized ES applications as being most
valuable in planning and scheduling functions at high levels of the control
architecture. A more complete characterization might be for problem solving
at levels 0-I or for extremely complex functions carried out at lower levels.
Proximity operations, controlled by the guidance, navigation, and control
subsystem, might contain such a potential application. It is possible to
propose ES applications to control of many functions. However, the utility of
such applications depends upon a trade between the complexity and resource
requirements of an ES and the potential for a more economical traditional
implementation. Control applications that do not involve a wide range of
possible planning/scheduling factors, or that are not frequently utilized, are
generally not candidates. Likewise, applications that can be easily automated
with conventional software techniques, maynot be worth the effort required to
provide an ES application on-board.

4-6

SECTION5

HARDWAREASPECTSOFAUTONOMOUSCONTROL

A glance at the candidate functional control architecture of
Figure 3-I reveals a wide range of hardware involved in its implementation.
This section discusses a series of topics related to hardware requirements
analysis and selection.

5.1 DIVERSITYOFCOMPUTINGRESOURCEREQUIREMENTS

Functional divisions of the control architecture reveal highly
diverse data processing and managementrequirements. Somespecific require-
ments that vary widely with the functional application are:

(1) Floating point computation.

(2) Computation/logic throughput.

(3) Data intercommunication bandwidth.

(4) Symbolic processing application.

(5) Addressable volatile memory.

(6) Non-volatile memoryavailiability and usage.

(7) Self-checking, fault-tolerant operation.

(8) Real-time control requirements.

(9) Control display interfaces.

(10) External data bus communication bandwidth.

The variety of requirements at different levels of control make it
difficult to satisfy all with one specific variety of processor or computer.

5.2 EXECUTIVECONTROLREQUIREMENTS

The most significant issue of top level executive control is the
recognition of this class of functions and the provision of hardware resources
to support them. Several important design issues are dependent upon the
detailed requirements for these functions. Somespecific issues are:
I) selection of computer type for the executive functions; 2) provision of a
single resource for the functions versus distribution amongseveral; and
3) the automation of functions to best utilize crew resources. The following
issues relate to the generation of more detailed requirements.

Executive control functions (level 0) are critical to coordination
of the interactive functions of the system. Mannedsystems, such as the space
station, have critical crew/ground interfaces at this level (control, display,

5-1

caution and warning, and system monitoring). The distribution of control
resources in the hierarchical architecture can reduce the need for high -
bandwidth data communications requirements amoungexecutive functions and
lower level functions. There will still remain a need for significant
processing capability for the functions that support the crew/ground control
interface, top-level planning and scheduling, and automated system-level
response for faults with major system impacts.

The planning and scheduling functions are major candidates for
application of AI/ES technology. This implies that there may be requirements
for symbolic processing computer resources and larger than normal volatile and
non-volatile memoryresources (subsection 4.3). These functions maywell be
the primary driver for sizing memoryresource requirements for level 0
functions. Most other functions that could require significant amounts of
massstorage (engineering data archiving, station data base maintenance, etc.)
are more likely to be provided at level I or 2 in the Data ManagementSub-
system (DMS).

Ready access to engineering status telemetry for crew monitoring
could entail a significant data communication rate requirement unless it is
archived in the DMSand merely requested for special format displays by the
executive functions.

5.3 AUTONOMOUSHEALTHANDMAINTENANCEIMPLICATIONS

Requirements to evolve new operational capability in flight and to
automate fault detection and redundancy managementhave significant implica-
tions for the design of status measurments. These status measurementshave
traditionally been intended for inclusion in a telemetry stream of limited
content and data rate. The measurementsare frequently commutatedin a manner
that conceals time order relationships amoungdifferent measurements. This
characteristic of the telemetry process and the non-real time nature of the
analysis process increase the difficulty of identifying which values are
symptomsof a primary fault and which reflect the interactive response of
componentswhich have not failed. Providing carefully designed autonomous
health and maintenance capability can significantly reduce the complexity of
support for fault detection and analysis as well as aiding the process of
testing new additions to the system.

The design process for hardware status measurements(telemetry
points) should consider the real time nature of automated monitoring and fault
response. Key measurementsthat directly reflect a failure within an element
should be designed into the element as well as those performance measurements
that permit trend analysis. Measurementsshould be unambiguouswith respect
to internal faults and allow the determination of conditions which may be
caused by external faults.

Telemetry status measurementsfrom the lowest levels of the control
hierarchy should be software-reprogrammable at some level of control or data
managementresource. This allows hardware elements to be added, measurements
to be changed as a function of operating mode, and displays to be augmentedin
abnormal circumstances. Basic hardware for the telemetry must be provided in
the design of the low-level elements, but a higher-level selection process
should allow for changes in desired data collection strategies.

5-2

Test data points and status monitoring points that are designed into
elements for ground acceptance testing in manufacturing should be accessible
in flight. This capability may rarely be required for any single element, but
the programmability of the telemetry stream contents would allow the capability
to be exercised whenneeded without constraining the resources for normal
operations. Major elements such as earth sensors frequently have these test
points designed into the hardware already, but they are simply not connected
for flight. The ability to select or deselect these points at a local resource
level can make them availiable if required.

In-flight testing mayrequire that redundant elements be activated
and exercised with real or simulated inputs while their alternates perform
normal support. This will require special design provisions to inhibit logical
or commandoutputs from the element under test from reaching operational
elements. The design must also enable injecting non-operational test inputs
and analysis of the response of the element under test.

5.4 FAULTTOLERANCEFORCONTROLRESOURCES

Computing and data communications resources are subject to both
transient and hard faults. Solid state memoryand processors are subject to
randomfaults caused by cosmic ray hits, electrostatic discharges, and noise
sources. Incorporation of new technology such as Very Large Scale Integration
(VLSI) mayincrease vulnerability to these effects. Hardware in long-duration
missions, such as space station (20 years + on orbit), will be constantly
exposed to this environment and the increased use of processors and memoryin
complex systems will increase the numberof exposed components. Consistent,
reliable operation of automated control systems will require fault tolerant
design to reduce adverse impacts of these environmental effects.

Self-checking, fault-tolerant computers can offer continued
operation in the presence of most hard and transient faults. A fault-tolerant
machine will utilize time resources in restoring operation after occurrence of
a fault, but offers continued operation and notifies the overall system (and
crew) of the occurrence of the fault and the action taken. This is comparable
to the best possible result in a non-fault tolerant machine which would result
in someanomalous behavior of the system. The anomaly would require external
intervention to restore operation, would consumesignificant personnel
resources to investigate, and might not be traceable to the point of origin. A
worst case would propagate to other subsystems. There are a number of design
approaches to fault-tolerant computers. The most promising prospects utilize
a combination of hardware sensing and reaction with software support
(Reference 5-I). Hardware support provides rapid reaction to critical internal
faults and reduces the use of memoryaddress space as overhead for fault
tolerance.

Hammingcode techniques supported by redundant memoryplanes offer
protection against memoryfaults with someoverhead in data-transfer times.
Transient "bit flips" can be corrected in the majority of incidental cases.
Hard faults that fail to respond to bit resets can be replaced by spare
resources. Audit trail requirements result in the identification of the fault
action and a record of the fix and the resulting hardware configuration.

5-3

Data communications on internal intercommunications buses and
external data buses are also prone to occasional faults. The relatively low
_peed data transfer requirements of distributed control allow a separate
control data bus with lower error rates. Such a bus is also easier to protect
from faults than the high-speed buses required for customer payloads and such
specialized space station requirements as color video.

Fault-tolerant hardware design is becoming a standard application
for high-value commercial applications such as telephone switching and aircraft
avionics. Relatively little use has occurred in space applications though
technology development programs for fault-tolerant computers have been under
way for a numberof years. Programssuch as the space station will require
significant increases in computing capacity over and above that required by
past programs. Front end costs of providing fault-tolerant computing can be
more than repaid in terms of operational reliability and reduced risk of
failure in the control of complex systems (References 5-2 and 5-3).

5-4

SECTION6

SOFTWAREASPECTSOFAUTONOMOUSCONTROL

Autonomouscontrol relies on a combination of hardware and software
for implementation. The flexibility of control response availiable with
software leads to a significant increase in the amount of on-board software in
complex spacecraft systems. This increases the need to apply modernsoftware
design and engineering practices to increase productivity of the development
process. Otherwise there will be a tendency to replace a ground-based
"marching army" of operations controllers with a similar force of programmers.

6.1 SOFTWAREVERSUSHARDWARERESOURCES

Hardware implementation best supports mature, well-understood tasks
which do not change significantly over the life of the system. Sensing the
state of components, implementing componentstate changes, and providing
redundant functional capability are generic examples of such tasks. Software
is best used to control new and complex tasks which have a significant risk of
change or which will require flexibility for future growth. Software provides
an inherent "robustness" of design that allows for adaptability to unexpected
failures or design problems. The use of "read only memory" (ROM)or "firmware"
for task implementation should be considered in the same light as hardware
implementation due to the added difficulties of changing or overriding logic
stored [n ROM.

6.2 RESOURCEMARGINSIN SOFTWAREDESIGN

Memorysize, processing throughput, and data communications
capability are critical resources to be managedin the development process.
Memoryhas a tendancy to be used if it is availiable, regardless of how large
the amount may be. The Galileo Project established a software management
policy that stated specific memorymargins would be maintained at major design
review milestones. This policy did not prevent the design from oversubscribing
resources. This has led to a descoping of the software requirements to allow
implementation in the fixed resource available. A complex project will be
able to use how ever muchmemory[s available; consequently, high-density
memoryand processors with large or virtual address spaces will be required to
support the resulting designs. Processing throughput and data bus traffic
rates must also be controlled through margin managementpolicies. They are
more amenable to design tradeoffs and distribution of functions to other
control levels than the memoryresource, however.

6.3 AN "OPERATINGSYSTEM"FORTHESPACESTATION

The autonomouscontrol architecture example for the space station
presented in Reference 2-I provides a hint at the complexity of the hardware/
software system required for a large project. The referenced work addressed
the functional control on the machine side of the man/machineinterface. The
complexity of the result raises the critical issue of how the crew and ground
operations personel will control and interface with the station machine. The
interface will involve display and control hardware driven by software. The

6-1

software will fulfill a function much like that of a traditional "operating
system" for a computer. It must provide a control interface "language" for
the operator to express his instructions to the system. The most visible
requirement is for the operating system to allow operator monitoring and
control over manual and automated tasks at all levels of the control hierarchy.
This, however, is only part of the operating system function. Software
routines will support operator display and communication, high-level
performance analysis tasks, caution and warning, and a series of information
utility tasks that will becomeapparent only as the operability of the station
design is addressed.

6.4 COMMONFUNCTIONALREQUIREMENTSFORTESTANDOPERATIONS

The samefundamental operator interface and control functions needed
for flight operations are required for integration and test of the system.
Testing requires more lower-level data in more detail and with more frequency
than nominal flight operations, but the functional tasks needed to request,
process, analyze, and display the data are essentially identical. Requirements
for integration and test of new or upgraded system elements in flight will
cause the more detailed data and control requirements to arise at intervals in
the mission. The test modecapabilities will also prove invaluable in support
of failure analysis and anomaly investigations.

A properly designed operating system maybe used throughout the life
of the spacecraft system, from manufacturing test to flight operations. As the
primary meansof controlling the spacecraft, system operability requires that
the operating system be a major system design consideration. This meansthat
the requirements and design activity for this operating system proceed in
parallel with (or precede) the design of the spacecraft. As a minimum, the
major functional elements of the operating system need to be defined and a
development plan must be derived that relates the schedule to the system
design, implementation, and test schedule.

6.5 A COMMON"TESTANDOPERATIONSCONTROLLANGUAGE"

The "language" which the operator uses to express control actions
and operating procedures to the machinepart of the system is critical to the
ease and reliability of use of the system. Computeroperating systems (Unix,
CP/M, MS/DOS,VM/OS,etc.) each has its own language of commandsand associated
syntax which offer varing degrees of "user friendliness" to the operator. The
real power of the operating system is in the software functions that are
executed as a result of interpreting the inputs expressed in the language.
The design of the language is critical to the operator's ability to understand
and use these software functions in a reliable manner.

An important distinction to note is that this "language" is an
interface and control language for operator communicationwith the machine.
It is not a programming language such as ADA,HAL, or FORTRAN.Indeed, these
programming languages would be candidates for writing the software that imple-
ments the Test and Operations Control Language (TOCL). The language will,
however, allow the development of prestored batch procedures to accomplish
complex predetermined sequences of functions. In this respect, it will provide
a high-level "system programming" capability.

6-2

This language concept itself is not new in the aerospace community.
The "System Test and Operations Language" (STOL)was developed at the
University of Colorado to support the Solar MesosphereExplorer flight project.
It has been utilized for spacecraft system test, itegration of spacecraft with
ground operations, and flight operations. A '_uropean Test and Operations
Language" (ETOL) is utilized by the European Space Research Organization (ESRO)
as its standard for control interface with its spacecraft. The KennedySpace
Center has developed a system called GOALfor the automated prelaunch checkout
of the space shuttle. There is currently an effort to establish an IEEE
standard for such languages that draws upon the experience of all these efforts
and the general automated testing technology community.

The crucial point for the space station project is that the same
standard should be utilized for all phases of the project. Several possible
benefits could result:

(1) The language represents a unifing concept in the design of

control for the station at all levels, among diverse

contractors, and of the different NASA centers.

(2) Test procedures at subsystem level and below can be passed on

to integration test and maintained to support flight tests

for performance validation, integration of new capabilities,

and fault investigation.

(3) Resources would not be expended to develop and implement

procedures in contractor-unique systems that are not portable

to system operations support.

(4) Personnel participating in integration and test are allowed

to gain operations experience that can be applied in flight

operations for normal operations or anomaly investigations

and contingency operations.

Specification and design of this language is a significant part of

the operating system implementation. It should be a front end intensive

activity to support development and test of early versions before the major

system design activity takes place, as initial versions must be availiable at

least to support subsystem level test activity.

6.6 SOFTWARE DESIGN FOR OPERATIONAL FLEXIBILITY

Software must offer maximum flexibility with minimum impact upon

configuration control and retesting. The data-base-driven logic designs

should be used as much as possible to allow changes to specific operating

behavior without impact upon compiled code. This concept is discussed in

subsection 4.4 as a move towards expert system implementation. Regardless of

this issue, it provides the most reasonable means of modification of software

behavior and operating features by operations support personnel and crew.

6-3

6.7 AUDIT TRAIL REQUIREMENTS

Reference I-2 discusses the concept of an audit trail. This is a

record of the control actions carried out by an autonomous or automated system.

The information identifies the time history of control logic execution,

circumstances that initiated the actions, and the resulting states of the

system. An audit trail supports system test, validation of operational

behavior, and monitoring of performance by operations personnel. The concept

was originally proposed to allow the action of automated fault protection

software to be traced after the fact of execution. It also allows visibility

into the actions of any automated function. Programmability of audit trail

contents allows the basic storage resource to be utilized at different levels

of detail and for a variety of different purposes at different times in the

mission. The audit trail process may be compared to the debug feature offered

in the compilers of many programming languages.

6-4

SECTION 7

ISSUES IN AUTONOMY IMPLEMENTATION

Autonomous control influences the design, test, and operations of

space systems. Our lack of experience in system level autonomy raises a

number of issues of concern. This section introduces and comments on some of

these issues.

7.1 DESIGN AND IMPLEMENTATION METHODOLOGY

Implementation experience is limited to small numbers of critical

funotions selected on the basis of special mission requirements. Valuable

lessons have been developed from this experience, but there is no experience

with an integrated, system-level design approach for autonomous control.

Preferred architectural approaches have been developed at a functional level

(Reference 2-i) through studies and analysis activities and tentative

approaches to a design methodology have been proposed (Reference 1-2). These

are preliminary efforts, however, and the current approaches to system level

design for autonomous control remain a matter of engineering judgement

extrapolated from previous flight experience.

7.2 CONTROL ARCHITECTURE

Designing a system with a complex set of autonomous functions leads

to difficulties in timing and resource contention with a central computer

implementation. There are many potential decentralized resource control

architectures that may be selected for a particular mission. A hierarchical

functional description of the system is useful in the design process, but

there are many constraints in the next important step of extending the

functional design to a specific allocation of functions to resources in

subsystems. Individual designers and organizations will have preferred

approaches based on extensions of previous work. There remains an overall

lack of hard experience with the trade-offs involved in the initial

architecture allocation to hardware resources.

7.3 COMPONENT AVAILABILITY

Availability of flight-qualified components is a major barrier to

design of an autonomous control architecture. The design concepts that have

been developed utilize large numbers of computing resources, significant

quantities of random-access memory, fault-tolerant hardware, high-capacity

mass memory, and a significant degree of control software. Components which

meet functional characteristics such as fault tolerance, or which have

acceptable mass and power usage for their performance, are not readily

availiable. This constrains the designers at both system and subsystem levels

to designs which significantly limit the number of autonomous functions or

compromise the system level implementation of the design.

7-i

7.4 SYSTEMDESIGNEXPERIENCE

The three issues above tend to skew cost/risk trades of partitioning
functions towards ground implementations or force initial autonomy requirements
to be descoped to fit within availiable resources. Deliberate choices for
potential onboard functions and architectural options must be tested in
prototype form to reduce perceived risks and develop a proven implementation
methodology. Major componentswith operating characteristics that support a
low risk _mplementation (fault-tolerant, low mass/power consumption, etc.)
must be developed and proven. Finally, a demonstration of the utility and
functioning of system level autonomouscontrol features must be performed to
prove the basic concept and develop implementation experience.

7.5 TESTANDVALIDATION

This may prove one of the most difficult problems of the entire
field. Frequently it is impossible to test a11 states of a conventional
complex system. The problem will be more difficult with significant degrees
of automated or autonomouscontrol. Designing for minimumfunctional
interaction, complete testing at lower levels of the design, and automation of
the test process with a commontest control procedural language offer some
approaches to ease test and validation problems. Manysignificant challenges
remain. Howdoes one choose a set of functional tests to validate the
integrated system performance even if complete testing has been accomplished
at lower levels of the design? Howdoes one design a fault-tolerant system
with the capability to inject simulated faults to exercise design features
without impacting nominal operation? Howdoes one decide what set of
regression tests must be run on the system when it has been updated with new
components?

Use of AI or ES techniques mayfurther complicate the validation
problems. J. Matijevic notes that a proof of a mathematical theorem related
to four-coloring planar mapswas developed by an ESat the University of
Illinois in the late 1970"s. The proof has not yet been accepted by muchof
the mathematics community, however, as the proof method is not "observable".
The samedifficulty may arise with the validation and test of someAI
techniques in sequence generation and control. Acceptable techniques must
produce results in a verifiable manner.

7-2

SECTION8

REFERENCES

I-1. Turner, P. R., "Autonomyand Automation for Space Station House-

keepin$ and Maintainance Functions", ASME Winter Meeting, 17 November 1983.

i-2. Turner, P. R., "Autonomous Spacecraft Desisn and Validation

MetbodolosY Handbook", Issue i, USAF Space Division Report SD-TR-82-58, JPL

D-188, 30 April 1982.

I-3. Space Station Task Force, "Space Station System Operational

Requirements", Baseline Issue, December 1983.

2-i. "Autonomous Spacecraft Systems: Architecture and TechnolosY",

JPL D-1197, 15 December 1983.

4--I. Nau, D. S., "Expert Computer Systems", IEEE Computer, February 1983.

4-2. Engelman, C., et.al, "KNOBS: An Intesrated AI Interactive Plannin$

Architecture", AIAA Computers in Aerospace IV Conference, Hartford Connecticut,

24-26 October, 1983.

4-3. Orlando, N. E., "A System for Intellisent Teleoperation Research",

AIAA Computers in Aerospace IV Conference, Hartford Conn., 24-26 October, 1983.

4-4. Vere, S. A., "Plannin$ Spacecraft Activities with a Domain

Independant Planner", AIAA Computers in Aerospace IV Conference, Hartford

Conn., 24-26 October, 1983.

4-5. Friedman, L., "Transformin$ Expert-System Software Into Hardware",

Jet Propulsion Laboratory, Pasadena, CA 91109, January 1984

5-1. Riethle, G. S., "Self-Checkin$ Computer Module", JPL D-1121 for

Autonomous Redundancy and Maintenance Management Subsystem Demonstration

Project, September, 1983.

5-2. Rennels, D. A., "Fault-tolerant Buildin$-B1ock Computer Study", JPL

Publication 78-67, July 1978.

5-3. Avizienis, A. A, Ercegovac, M. D., and Rennels, D. A., "Fault-

tolerant Computer Study, Final Report", JPL Publication 80-73, February, 1981.

8-I

APPENDIX A

TOPICAL SUMMARY

A-I

The purpose of this appendix is to condense and highlight signifi-

cant points from each topical discussion in the text. The key points within

the discussion and rationale are extracted and presented as they might be for

a viewgraph presentation.

I. AUTONOMY DEFINITION AND ATTRIBUTES

So Autonomy is a system attribute created by design of system

functions and the means for autonomous control.

b. Characteristics of Autonomy are:

(1) Control is maintained within the defined boundary of

the system.

(2) Fault-tolerant operation within the system is required.

(3) A specified level of autonomous performance must be

maintained for a specified time duration.

(4) Adaptability to changes in internal or external

conditions are met by sensing and analyzing the

conditions, directing a change to the system operation,

and implementing the required response.

(5) Human participation in the process is allowable if man

is included in the boundry of the defined system.

C. Autonomous system control is fundamentally a hierarchical

process.

do Machine autonomy is a combination of automation and fault

tolerance.

e, Functions requiring autonomous control include those which

are interactive with other functions within the system and

those which may be controlled independently of other

functions.

f. Time aspects of autonomy include both the duration of the

required autonomous operation and the real-time nature of the

control.

g- Computer and data system technologies that support fault-

tolerance and provide more performance for lower power, mass,

and risk, are fundamental to practical autonomous control

implementations.

. AUTONOMY AND COST/BENEFIT ISSUES

So Addition of autonomy has a front-end cost impact upon a

program that is more visible and more easily assessed than

the potential long term benifits.

A-2

.

.

b. Cost and complexity issues related to autonomy must be

contrasted with cost, complexity, and ability to perform the

mission without autonomy.

C. Many control design features of a complex system must be

provided regardless of the autonomy of the design. Such

items should not be charged against autonomy.

do Top-down system and subsystem level design of autonomous

functions in a complex system is more effective in cost and

performance than later "patching" individual subsystem level

design features.

e. Life-cycle payoffs for autonomy require the deliberate

planning of operations for reduced ground support and project-

level commitment to meet the goal.

f. Initial sizing of resource requirements for autonomous control

should include a significant margin as the complexity of im-

plementation of requirements is often greatly underestimated.

g" Traditional reliability models are not applicable to analysis

of systems containing autonomous redundancy management and

maintenance.

SYSTEM ARCHITECTURE FOR AUTONOMOUS CONTROL

a. Control of a complex system composed of multiple subsystems

is fundamentally a hierarchical and distributed control

process.

bl Implementation of a distributed control hierarchy involves

both data processing (logical control) and data communications

(of sensory data and commands).

C. Distribution of computing resources in the control hierarchy

can reduce the contention of parallel functions for real-time

resources.

do Fault-tolerant computing in the control hierarchy can protect

the system against the propagation of failures in the

controllers and can monitor the system to simplify analysis
of faults.

e. Self-checking fault-tolerant computing may be applied at

higher executive levels of the control hierarchy to protect a

wide range of lower-level functions or devices, reducing the

need for self-checking computers at those levels.

AUTONOMY AND ARTIFICIAL/MACHINE INTELLIGENCE

a. Expert systems (ES) technology provides the most promising AI

field for early applications in system control.

A-3

o

61

bo The selection of appropriate domains for expert systems is

critical to successful applications•

C_. Potential implementation problems caused by inability to

provide ES hardware and software resources in a flight

environment can be addressed by restricting the application
domain•

¢I • Modern software design techniques of data-base driven logical

control and modular programming techniques can be naturally

extended toward ES implementations.

e. Expert systems are most appropriately placed at executive

levels of the control hierarchy•

HARDWARE ASPECTS OF AUTONOMOUS CONTROL

ao Diversity of computing requirements in the control hierarchy

suggests a need for different types of processors in the

design•

I) • Executive control levels should be afforded the protection

inherent in fault-tolerant self-checking computers•

Co Requirements for real-time autonomous control have significant

impacts upon hardware and software architecture and design.

do Several hardware and software supported fault-tolerant design

features are availiable to protect system operation fron

transient and permanent faults in the control resources.

SOFTWARE ASPECTS OF AUTONOMOUS CONTROL

al Hardware control implementation is well suited for mature,

well understood tasks which do not change significantly over

the life of the system.

bl Software is well suited for new and complex tasks which have

a significant risk of change or which require flexibility for

future growth•

el Memory size, processing throughput, and data communications

loading are critical resources affecting control software.

do Critical resource margins must be established and managed to

prevent over-running capacities with attendant impact upon

software implementation.

e. The space station machine requires a software-based

"operating system" to implement crew and ground control.

f. Operating system requirements for integration test and flight

operations are fundamentally the same.

A-4

.

g. A "Test and Operations Control Language" (TOCL) is required

as the interface between man and the operating system.

No The TOCL is not a programming language, though procedures may

be written in it in a manner similiar to high level programs.

i. The TOCL can serve as a powerful tool to enforce common

understanding of control design standards in a diverse

community of contractors participating in the program.

j. An "audit trail" of autonomous control actions is required to

provide visibility into the operation of the machine and to

support test and validation.

ISSUES IN AUTONOMY IMPLEMENTATION

a. Prior flight experience has led to current design concepts,

but they have not been validated by demonstration.

b. The hierarchical functional architecture has many conceptual

advantages for complex systems, but allocation of the

functions and interactions between computing resources needs

design and testing experience.

Co Lack of flight-qualified components to implement an

architecture limits the development of concepts by experienced

system designers.

d. Test and validation requirements for complex autonomous

systems may prove a major barrier to implementation.

A-5

